Lehrform (teaching format) / SWS (hours per week): 4K
Kreditpunkte (credit points): 6
Turnus (frequency): usually, each summer term
Inhaltliche Voraussetzungen (content-related prior knowledge/skills): basic knowledge in algorithms theory, complexity, graphs

Sprache (language): English
Lehrende (teaching staff): AG Kombinatorische Optimierung und Logistik (Prof. Dr. Nicole Megow)

Studiengang (degree program)	Module	Semester
Informatik (Master)	IMAT, IMA-SQ, IMVT-AI, IMVT-VMC	ab 1.Sem.
(Techno)Mathematik (Master)	WP, Vertiefung Algebra/Numerik	
Informatik (Bachelor)	(nur Freie Wahl)	

Lernergebnisse / Learning Outcome:

- to have a comprehensive understanding of approximation algorithms for combinatorial optimization problems
- to know several fundamental combinatorial optimization problems and be able to formulate them
- be able to analyze the running time and approximation guarantee of algorithms
- to know and apply general techniques for designing new approximation algorithms
- be able to establish approximability and non-approximability results for optimization problems

Inhalte / Contents:

This course gives a comprehensive overview on techniques for solving computationally intractable (NPhard) combinatorial optimization problems while providing strong mathematical guarantees on the algorithm's performance in comparison to the optimum solution. The lectures will consist of designing polynomial-time algorithms and proving rigorous bounds on their worst case performances. The course covers the following topics:

- greedy algorithms and local search
- rounding data and dynamic programming, polynomial-time approximation schemes
- deterministic rounding of linear programs (LPs)
- random sampling and randomized rounding of LPs
- prima-dual methods
- hardness of approximation
- combinatorial optimization problems such as Minimum Steiner/Spanning Trees, Scheduling, Facility Location, Set Cover, etc.

Hinweise (remarks): The table lists only the primary / most specific modules to which this course is assigned.

