03-IMVP-BGROB	Biologische Grundlagen für autonome, mobile Roboter
	Biological Foundations for Autonomous Mobile Robots

Lehrform / Anzahl der SWS: 4VL

Kreditpunkte: 6

Turnus: i.d.R. angeboten in jedem SoSe

Inhaltliche Voraussetzungen: Reinforcement Lernen (empfohlen)

Sprache: Deutsch / Englisch

Lehrende: Prof. Dr. Frank Kirchner

Studiengang	(Primäre) Modul(e), ggf. Schwerpunkt(e)	Semester
Informatik (Master)	IMVP, IMVP-AI	ab 1.Sem.
Systems Engineering I/II (Master)	M07-VT-AuR	ab 1./2.Sem.
Informatik (Bachelor)	(nur <i>Freie Wahl</i>)	

Lernziele:

- Verständnis der Robotik als integrierende Wissenschaft zwischen Elektrotechnik, Mechatronik und Informatik.
- Grundlegende Kenntnisse des allgemeinen Aufbau und der Funktion des zentralen Nervensystems
- Kenntnisse der Entstehung, Weiterleitung und Beschreibung des Aktionspotentials bei Nervenzellen
- Vertiefende Kenntnisse zu allgemeinen Grundlagen der motorischen Leistung bei Vertebraten und Invertebraten
- Bewertung der Informationsverarbeitung in biologischen Systemen
- Bewertung und Klassifikation von biologischen Prinzipien im Bereich der Lokomotionskontrolle
- Kenntnisse der Übertragbarkeit und Anwendung biologischer Prinzipien bei der Kontrolle mobiler autonomer Roboter
- In der Terminologie des Fachgebiets Robotik sicher kommunizieren können und Systemkomponenten anhand der Terminologie klassifizieren und bewerten können.
- Durch den Übungsbetrieb in kleinen Gruppen wird die Kooperations- und Teamfähigkeit geübt

Learning Outcome:

- Understanding of robotics as an integrating field of electrical engineering, mechatronics, and computer science.
- Basic knowledge of the general structure and function of the central nervous system.
- Knowledge of the origin, transmission and description of the action potential in nerve cells.
- In-depth knowledge of general principles of motor performance in vertebrates and invertebrates.
- Evaluation of information processing in biological systems.
- Evaluation and classification of biological principles in the field of locomotion control.
- Knowledge of the transferability and application of biological principles in the control of mobile autonomous robots.
- Be able to communicate confidently in the terminology of the field of robotics and classify and evaluate system components using the terminology.
- Practice cooperation and teamwork skills by working in small groups.

Inhalte:

- Allgemeiner Aufbau und Funktion des zentralen Nervensystems
- Entstehung, Weiterleitung und Beschreibung des Aktionspotentials bei Nervenzellen
- Allgemeine Grundlagen der motorischen Leistung bei Vertebraten und Invertebraten
- Endogen aktive Zellen und zentrale Mustergeneratoren
- Anwendung biologischer Prinzipien der Lokomotionskontrolle bei autonomen, mobilen Robotern

Contents:

- General structure and function of the central nervous system
- · Origin, transmission and description of the action potential in nerve cells
- · General principles of motor performance in vertebrates and invertebrates
- Endogenously active cells and central pattern generators
- Application of biological principles of locomotion control in autonomous mobile robots

Unterlagen (Skripte, Literatur, Programme):

• Kandel, E., Schwartz, J, Jessel, T (eds)'Principles of Neural Science', Elsevier Science Publischers (1991)

Form der Prüfung: i.d.R. a) Übungsaufgaben und Fachgespräch oder b) mündliche Prüfung

Arbeitsaufwand:	180h
Präsenz	56h
Übungsbetrieb/Prüfungsvorbereitung	124h

Weitere Hinweise: KEINE